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Categorization by a three-state attractor neural network
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The categorization properties of an attractor network of three-state neurons, which infers three-state concepts
from examples, are studied. The evolution equations governing the parallel dynamics at zero temperature for
the overlap between the state of the network and the examples, the state of the network, and the concepts, as
well as the neuron activity, are derived in the limit of extreme dilution. The transition from the retrieval region
to the categorization region occurring when the number of examples or their correlations are increased is
discussed as a function of the zero-activity threshold of the neurons. In particular, the differences with models
for binary concepts are highlightef51063-651X97)05312-9

PACS numbd(s): 87.10+e, 64.60.Cn

Some years ago a minimal modification of the Hopfield Consider a network oN three-state neurons. At tinte
model was suggested such that categorization of patterrgnd zero temperature the neurdns ;} are updated in par-
emerges naturally from an encoding stage structured in layallel according to the rule
ers[1]. The network is spatially homogeneous, but the pat-
terns are hierarchically ordered. Related models have been
examined inf2—5|. These models lead to the appearance of  Tirr1=Fo(hi), hiy= 2 Jijoje, i=1,... N
stable states besides those corresponding to the original pat- 1D (1)
terns, e.g., the ancestors of the categories to which those
patterns belong. . . . whereh; ; is the local field of neurom at timet. The input-
ders?c?rgtﬁc?;tet[{eapse”:f]grlri:nec%blgfne{url:eetxv/\\l/z?kpirr?ﬂgz(rar?ir:g (;r'output relationF, is, in general, a monotonic function and

. : . .r\/\1ill later on be chosen as the three-state steplike function

extensive number of ancestor patterns in such a hierarchica
ordering, given that the learning takes place with groups of a sgrnx) if |x|>0
finite number of(correlated patterns situated on a lower = _ 9
level of the hierarchical trefg]. In other words, the problem o 0 if |x|<8,
of categorizing example&.e., the correlated pattermnto
classes defined by concepi®., the ancestoyss studied. It  where§ is the zero-activity threshold parameter of the neu-
turns out that such a network loses its ability to retrieve theons. The synaptic coupling; are determined through the
examples when a critical number of them is presented duringiepbjan learning ofs three-state examplesy®’ e {0,
the learning stage, but it then gets the ability to categorize, 1}, u=1,...p.p=1,...s, of p three-state concepts,
theRconceIpt$6—éO]|. ith multi d | h gi“e{o,t 1}. The examples have zero mean and variafice

ecently, models with multistate and analog neurons av:l/NEi(n{”’)z, which is a measure for their activity. The

Flele rllzmg?/d:j;?% I:n;?oeg S:SS?IO:élﬁatfi%cg'rszt;ggrwprgf_lemsconceptii” are chosen to be independent identically distrib-

amples are needed in order to start categorization. Howeveyl€d random variableIDRV) with mean zero and activity
the generalization error, i.e., the Hamming distance betweefidua! to the activitA of the examples. At site=1,... N,
the microscopic state of the network and tfénary) con- each set of examples is built from the concept through the
cepts is larger than in the corresponding two-state model. AT0€SS
further improvement is obtained by using low-activity ex-
amples, from which(binary) full-activity concepts can be
inferred, even if the number of examples is snjalt]. This ] ) )
must be due to the fact that mixture states of patterns can b€ variables\{ are also taken to be IIDRV with a bias
inherently stable, allowing the network to ultimately form towards the value-1 such that they are given by the prob-
higher-activity patterns out of smaller ones, just as happendbility distribution
in the retrieval regime for both highly dilutdd 3] and fully
connected three-state netwoildst]. PAP)=Db SN —=1)+b_o(N*+1), 4
In this Brief Report we extend these models by allowing
the concepts themselves to be three state. A§jnwe do  With b.=(1%b)/2. The parameteb describes the correla-
not require full symmetry of the retrieval overlaps of the tion between the examplg/” and its concept!*, ( 7{""¢!’)
examples. =DbAg;;, and the correlation between two different examples
of the same concefgty/"” /") =b?As5;; .
We remark that the binary categorization mof@l7] is
*Electronic address: david@tfdec1.fys.kuleuven.ac.be recovered by setting=1 andf=0; the standard three-state
TElectronic address: desire.bolle@fys.kuleuven.ac.be neuron mode[13] is obtained by taking=1 andb=1.

(2)

piP=¢gNP, NPe{xl}, p=1,...s 3)
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In order to measure the quality of retriev@ategoriza-
tion) of the examplegconceptswe introduce the Hamming  h; = 7'm&,+ X, 7*mg+ E 7;,’“’2 CA 7o,
p>1

distance between the examplésoncepts and the micro-
scopic state of the netwoik.6] N

L mg’t—‘z é&”ilpaj,t- (10

D=~ FP— 0 J°=A-2AM{ +Qny, (5 N -

‘ Nzi [ = ol Nt Que O In the thermodynamic limit we then obtain in a standard
way [12,15,16

1 11
Ef=N 2 L6 0P =A-2AM{ +Qu. (® My = (R AR o a1y
mt+1 <<<Xs 0(h >)\11)x >w1 (12
The quantityE{* can be considered as the generalization er- _
ror in this context(see, e.g.[17]). Equations(5) and (6) Mt1+1=<((F9(ht)>x11)xs>wt, (13
define the retrieval overlap between the microscopic state of
the network and theth example of theuth concept, the = A(((F%( (1-A)(F¥( 14
overlap between the microscopic state of the network and the Quea =AU, t)>"11>x >““ HFo wt»‘”t (149
concepté! itself, and the neural activity with
1 he=aHm+ (s— 1) xgmis+ o, (15)
ﬁ’]t:_z U U'| ts Mﬁ,t:mz fiuo'i,t! (7)
' wi=[arQJ*2\0,). (16)

1 Here = indicates that this relation is valid in distribution,
QN,t:NE EXk 8)  Xs=[1(s—1)]=5. A\, r=s[1+(s—1)b*], and the quan-
' tity M(0,1) is a Gaussian random variable with mean zero
and variance unity. The angle brackets denote the further

In obtaining the second equalities in E¢). and(6) we have =~ 2Verages over both ™ and xs, and overw;. The average

used the fact that the activities of the concepts and of th@VerA=" has to be done according to the distributi@n For

examples are taken to be equal. Ting", are normalized the average ovexs we employ

order parameters within the interat 1,1], which attain the s 1

maximal valuemy”=1 wheneverto;= !’ Db(i):< _ )bj+b511' , (17)
We now consider an extremely diluted asymmetric ver-

sion of this model in which each neuron is connected, on

average, withC other neurons with 2j =(s—1)(xs+1). In the case that we have many ex-

amples per concept we use foy the Gaussian approxima-
tion xg=b+z,\(1—b?)/(s—1) with zz=A(0,1) indepen-
P dent of w, . Furthermore, we have averaged already aver
Jij(C)= 2: 21 IR/ ©) The first term in the expressigd5) is the signal coming
from the first example of the first concept, while the second
term represents the signal of the other examples of the first
Here, theC;;e{0,1} are IIDRV with probability P{C; concept. It has a strength factgg. The third term is the
=1}=C/N,C>0. This allows an exact solution of the par- noise caused by the examples of tipe<(1) residual noncon-
allell dynamics[15]. densed concepts.

We take an initial network configuration correlated with  Because of the extremely diluted structure of the network,
only one concept meaning that only the retrieval overlaps foEgs. (11)—(14) give a complete description of the dynamics
the s examples of that given concept, say the first one, aréor a general monotonic input-output functiéry. Choosing
macroscopic, i.e., of ordéd(1) in the thermodynamic limit F, to be the three-state functiof2) we now discuss this
N—oo. In order to study the retrieval of a particular exampledynamics by solving numerically the fixed-point equations
we single out the componept=1. We furthermore assume given by Eqs(11)—(14).

that all other components are the same, g, =my’, for Besides the zero solutioh determined byn*'=M!=Q
all p>1. We call this property of the examples quasisymme-=0 we have the following different types of solution: the
try. retrieval solutionsR defined bym!>M1>0 andQ>0, the

The dynamics of this model is studied following standardcategorization solution§ defined by 6<m*<M?! and Q
methods involving a signal-to-noise analysisee, e.g., >0 and the self-sustained activity solutic®svith Q>0 but
[15,16)). At this point we recall that the retrieval overlaps m'=M!=0. For the retrieval, respectively, categorization
have to be considered over the diluted structure and the loadolution we impose the further conditidd<0.1, respec-
ing « is defined byp= aC. Splitting the local field in Eq(l)  tively, E<0.1. The idea is to guarantee a minimal retrieval,
into a signal and noise part gives respectively, generalization quality of the network.
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FIG. 3. The Hamming distand® (dashed ling the categoriza-
tion error E (full line), and the neuron activityQ (thin dashed-

dotted ling as a function of the threshold in the regionR_ of
Fig. 2.

FIG. 1. The Hamming distanc® =D2! (dashed ling the cat-
egorization errorE=EL (full line), and the neuron activityQ
=Q.. (thin dashed-dotted lineas a function of the correlatioh.
The number of examples=5, the loading rater=0.01, the activ-
ity A takes the values 1 in the upper part and 0.3 in the lower partisfied. But as the curves indicate, e.g., one finds the best
and the threshold is 0 in the left part and 0.5 in the right part. ~ POssible retrieval of the active siteB 0.7 forb<b.). Fur-

thermore, we also note the existence of a plateaifor the

Since there are many parameters to be considered in g€ Of three-state patterns and three-state neurons, where the
discussion of the numerical results we only show in Figs. 1-472mming distance is not very small but it still satisfids
the properties of the network we believe to be typical and~E: Finally, in all cases there exists a minimal value Eor
important. meaning that the categorization is optimal for the corre-

Figure 1 shows that for binary patterns< 1) the use of sponding network parameters. This does not always ha_ppen
three-state neuron®€0.5) does not affect the overall be- for b=1, the reason being that although_the neuron activity
havior of the network. However, for three-state patteras ( Q Pecomes high for larg, the pattern activityA may be so
=0.3) both the retrieval and the categorization abilities aremall thato; cannot matchg; . This is in agreement with
improved. The transition from aR phase to & phase is Ea. (6.)' L . . .
clearly present in all data. For a critical value of the correla- _ 1S behavior is further illustrated in a typicab,b)
tion, b, there is a crossing between theandE lines. Here phe}se diagrartFig. 2). We havg divided th&-phase in t\,NO
we remark that in the case of three-state patterns and binaf§f9i0ns, one of themR,) referring to the region wherd is

neurons @=0) the conditions for good retrieval and catego- b=0.1,0=0.02 b=0.5,0=
rization behavior of the full patterns are, of course, not sat- '° 1 =N
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) b ) a function of # for A=0.01,s=80, b=0.1, anda=0.02. Right:

The overlapM as a function off for A=0.01,s=80, b=0.5, and
FIG. 2. The @,b) phase diagram wittA=0.1,s=5, and « a=0.5 (dashed-dotted lineg a=1 (dashed ling a«=2 (dotted
=0.01. The thin dashed lin& indicates optimal categorization. line), anda=3 (full line).
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almost zero, the other on®() indicating the region where Finally, we have also studied, for comparisom,and M
D has already jumped to the plateau seen in Fig. 1. Rhis as a function of@ for an analog input-output relatioR ,
phase has not been seen before in the literature on the modeiganh/6). The same network parameters are used as in Fig.
with binary concepts. The typical behavior in this phase is4. Concerning retrieval of the examples a similar behavior is
represented in Fig. 3. Wher] increasifgtarting from Zero,  found with a slightly smallem. Concerning categorization,
bothE andD sharply drop simultaneously from a maximum however, although an analogous nonmonotonic behaviér in
value to a small valugaimost zero in the case df). ThenD i seenM does not come close to 1 for larger It demon-
jumps to a higher plateau, but stays smaller tBatthe R girates that the gain parameter of a continuous input-output
phase. Afterwards,D jumps further to become bigger than (g|ation does not play the role the zero-activity threshold
E (the categorization phaseFinally it attains the value 0.1 ,as for the three-state case. The reason is that in the three-
|: A, ;I'o ﬁ ctﬁrtaltn. extlent gne tCOUIq se;y that ttrrﬁg network algiate case this threshold switches off the neurons whose field
ows for both retrieval and categorization in region. h; is not large enough such that the can match the three-
However, optimal categorization occurs along the thin
. : state patternsg; .

dashed lineGopy of Fig. 2. In conclusion, we have studied the retrieval and categori-

In Fig. 4 we plot the behavior of the network for a smaller ation bro ert'e’s of an extremelv diluted three-state ng al
A. For a network in théR phase an appropriate choice &f z tlvv E thp : h th IXt' fy't i el d ; lf
leads to a retrieval overlam~1 while the overlap with a network throug € solution of 1iS parallel dynamics. In

pcomparison with existing models in the literature the con-

conceptM becomes small. Thereby we note that althoug .
the concept storage seems to be rather smakg/C cepts are allowed to be three state. The important parameters

—0.02), the example storage is large for correlated pattern%oveming the transition from the retrieval to the categoriza—_
(as=sa=1.6). For a network in th& phase and increasing 10N phgse are the numper of examples per concept anq 'Fhell’
values of@ until §=6,,(a) the overlap with a concept be- correlations. By choosing a_ppro_prlately the ze_ro-actlwty

comes larger, indicating that the categorization ability im-threshold of the neurons we find, in comparison with models

proves. Forg> f,,(a) this categorization ability slowly de- for binary concepts, that there exists a region where both the
creases and ab=6,(a), M falls abruptly to zero. This Hamming distance and categorization error stay small and
illustrates that for a carefully tuned, M~1, implying that  that a much greater number of concepts can be categorized.
categorization stays successful even for a concept loading
larger thana=3. So compared with the categorization prop- Universidad Autonoma de Madrid, and the Research Fund of

grtl_(as of the blnary.concept modeee Fig. 2 0f12)), th"?’ .the K.U. Leuven(Grant No. OT/94/9 One of us(D.B.) is
indicates that by using three-state concepts the categorization

error is smaller and that a greater number of concepts can Edebted tp the .Fund for Scientific Research—Flan@@es-
categorized. gium) for financial support.
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