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Categorization by a three-state attractor neural network

D. R. C. Dominguez* and D. Bollé†

Instituut voor Theoretische Fysica, Katholicke Universiteit Leuven, B-3001 Leuven, Belgium
~Received 16 July 1997!

The categorization properties of an attractor network of three-state neurons, which infers three-state concepts
from examples, are studied. The evolution equations governing the parallel dynamics at zero temperature for
the overlap between the state of the network and the examples, the state of the network, and the concepts, as
well as the neuron activity, are derived in the limit of extreme dilution. The transition from the retrieval region
to the categorization region occurring when the number of examples or their correlations are increased is
discussed as a function of the zero-activity threshold of the neurons. In particular, the differences with models
for binary concepts are highlighted.@S1063-651X~97!05312-9#

PACS number~s!: 87.101e, 64.60.Cn
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Some years ago a minimal modification of the Hopfie
model was suggested such that categorization of patt
emerges naturally from an encoding stage structured in
ers @1#. The network is spatially homogeneous, but the p
terns are hierarchically ordered. Related models have b
examined in@2–5#. These models lead to the appearance
stable states besides those corresponding to the original
terns, e.g., the ancestors of the categories to which th
patterns belong.

Shortly after, a simple Hebbian rule was proposed in
der to study the performance of a network in learning
extensive number of ancestor patterns in such a hierarch
ordering, given that the learning takes place with groups o
finite number of ~correlated! patterns situated on a lowe
level of the hierarchical tree@6#. In other words, the problem
of categorizing examples~i.e., the correlated patterns! into
classes defined by concepts~i.e., the ancestors! is studied. It
turns out that such a network loses its ability to retrieve
examples when a critical number of them is presented du
the learning stage, but it then gets the ability to catego
the concepts@6–10#.

Recently, models with multistate and analog neurons h
been introduced in the study of categorization proble
@11,12#. By using analog neurons@11#, fewer ~binary! ex-
amples are needed in order to start categorization. Howe
the generalization error, i.e., the Hamming distance betw
the microscopic state of the network and the~binary! con-
cepts is larger than in the corresponding two-state mode
further improvement is obtained by using low-activity e
amples, from which~binary! full-activity concepts can be
inferred, even if the number of examples is small@12#. This
must be due to the fact that mixture states of patterns ca
inherently stable, allowing the network to ultimately for
higher-activity patterns out of smaller ones, just as happ
in the retrieval regime for both highly diluted@13# and fully
connected three-state networks@14#.

In this Brief Report we extend these models by allowi
the concepts themselves to be three state. As in@7#, we do
not require full symmetry of the retrieval overlaps of th
examples.
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Consider a network ofN three-state neurons. At timet
and zero temperature the neurons$s i ,t% are updated in par-
allel according to the rule

s i ,t115Fu~hi ,t!, hi ,t5 (
j ~Þ i !

Ji j s j ,t , i 51, . . . ,N

~1!

wherehi ,t is the local field of neuroni at time t. The input-
output relationFu is, in general, a monotonic function an
will later on be chosen as the three-state steplike functio

Fu~x!5H sgn~x! if uxu.u

0 if uxu,u,
~2!

whereu is the zero-activity threshold parameter of the ne
rons. The synaptic couplingsJi j are determined through th
Hebbian learning of s three-state examples,h i

mrP$0,
61%,m51, . . . ,p,r51, . . . ,s, of p three-state concepts
j i

mP$0,61%. The examples have zero mean and variancA
51/N( i(h i

mr)2, which is a measure for their activity. Th
conceptsj i

m are chosen to be independent identically distr
uted random variables~IIDRV ! with mean zero and activity
equal to the activityA of the examples. At sitei 51, . . . ,N,
each set of examples is built from the concept through
process

h i
mr5j i

ml i
mr , l i

mrP$61%, r51, . . . ,s. ~3!

The variablesl i
mr are also taken to be IIDRV with a bia

towards the value11 such that they are given by the pro
ability distribution

p~l i
mr!5b1d~l i

mr21!1b2d~l i
mr11!, ~4!

with b65(16b)/2. The parameterb describes the correla
tion between the exampleh i

mr and its conceptj j
m , ^h i

mrj j
m&

5bAd i j , and the correlation between two different examp
of the same concept^h i

mrh j
ms&5b2Ad i j .

We remark that the binary categorization model@6,7# is
recovered by settingA51 andu50; the standard three-stat
neuron model@13# is obtained by takings51 andb51.
7306 © 1997 The American Physical Society
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56 7307BRIEF REPORTS
In order to measure the quality of retrieval~categoriza-
tion! of the examples~concepts! we introduce the Hamming
distance between the examples~concepts! and the micro-
scopic state of the network@16#

Dt
mr5

1

N(
i

@h i
mr2s i ,t#

25A22AmN,t
mr 1QN,t , ~5!

Et
m5

1

N(
i

@j i
m2s i ,t#

25A22AMN,t
m 1QN,t . ~6!

The quantityEt
m can be considered as the generalization

ror in this context~see, e.g.,@17#!. Equations~5! and ~6!
define the retrieval overlap between the microscopic stat
the network and therth example of themth concept, the
overlap between the microscopic state of the network and
conceptj i

m itself, and the neural activity

mN,t
mr 5

1

NA(
i

h i
mrs i ,t , MN,t

m 5
1

NA(
i

j i
ms i ,t , ~7!

QN,t5
1

N(
i

us i ,tu2. ~8!

In obtaining the second equalities in Eqs.~5! and~6! we have
used the fact that the activities of the concepts and of
examples are taken to be equal. ThemN,t

mr are normalized
order parameters within the interval@21,1#, which attain the
maximal valuemN

mr51 whenevers i5h i
mr .

We now consider an extremely diluted asymmetric v
sion of this model in which each neuron is connected,
average, withC other neurons,

Ji j ~C!5
Ci j

CA (
m51

p

(
r51

s

h i
mrh j

mr . ~9!

Here, theCi j P$0,1% are IIDRV with probability Pr$Ci j
51%5C/N,C.0. This allows an exact solution of the pa
allell dynamics@15#.

We take an initial network configuration correlated wi
only one concept meaning that only the retrieval overlaps
the s examples of that given concept, say the first one,
macroscopic, i.e., of orderO(1) in the thermodynamic limit
N→`. In order to study the retrieval of a particular examp
we single out the componentr51. We furthermore assum
that all other components are the same, i.e.,mN,t

1r 5mN,t
1s for

all r.1. We call this property of the examples quasisymm
try.

The dynamics of this model is studied following standa
methods involving a signal-to-noise analysis~see, e.g.,
@15,16#!. At this point we recall that the retrieval overlap
have to be considered over the diluted structure and the l
ing a is defined byp5aC. Splitting the local field in Eq.~1!
into a signal and noise part gives
r-

of

e

e

-
n

r
e

-

d-

hi ,t5h i
11mC,t

11 1 (
r.1

s

h i
1rmC,t

1r 1 (
m.1,r

p,s

h i
mr(

j Þ i

N
Ci j

CA
h j

mrs j ,t ,

mC,t
1r [ (

j ~Þ i !

N
Ci j

CA
h j

1rs j ,t . ~10!

In the thermodynamic limit we then obtain in a standa
way @12,15,16#

mt11
11 5^Š^l11Fu~ h̃ t!&l11‹xs

&v t
, ~11!

mt11
1s 5^Š^xsFu~ h̃ t!&l11‹xs

&v t
, ~12!

Mt11
1 5^Š^Fu~ h̃ t!&l11‹xs

&v t
, ~13!

Qt115A^Š^Fu
2~ h̃ t!&l11‹xs

&v t
1~12A!^Fu

2~v t!&v t
, ~14!

with

h̃ t8l i
11mt

111~s21!xsmt
1s1v t , ~15!

v t5@arQt#
1/2N~0,1!. ~16!

Here 8 indicates that this relation is valid in distribution
xs5@1/(s21)#(r.1

s l1r, r 5s@11(s21)b4#, and the quan-
tity N(0,1) is a Gaussian random variable with mean z
and variance unity. The angle brackets denote the fur
averages over bothl11 and xs , and overv t . The average
overl11 has to be done according to the distribution~4!. For
the average overxs we employ

pb~ j !5S s21

j D b1
j b2

s212 j , ~17!

with 2 j 5(s21)(xs11). In the case that we have many e
amples per concept we use forxs the Gaussian approxima
tion xs8b1zsA(12b2)/(s21) with zs5N(0,1) indepen-
dent ofv t . Furthermore, we have averaged already overj1.

The first term in the expression~15! is the signal coming
from the first example of the first concept, while the seco
term represents the signal of the other examples of the
concept. It has a strength factorxs . The third term is the
noise caused by the examples of the (p21) residual noncon-
densed concepts.

Because of the extremely diluted structure of the netwo
Eqs.~11!–~14! give a complete description of the dynami
for a general monotonic input-output functionFu . Choosing
Fu to be the three-state function~2! we now discuss this
dynamics by solving numerically the fixed-point equatio
given by Eqs.~11!–~14!.

Besides the zero solutionZ determined bym115M15Q
50 we have the following different types of solution: th
retrieval solutionsR defined bym11.M1.0 andQ.0, the
categorization solutionsG defined by 0,m11,M1 and Q
.0 and the self-sustained activity solutionsS with Q.0 but
m115M150. For the retrieval, respectively, categorizatio
solution we impose the further conditionD,0.1, respec-
tively, E,0.1. The idea is to guarantee a minimal retriev
respectively, generalization quality of the network.
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Since there are many parameters to be considered in
discussion of the numerical results we only show in Figs.
the properties of the network we believe to be typical a
important.

Figure 1 shows that for binary patterns (A51) the use of
three-state neurons (u50.5) does not affect the overall be
havior of the network. However, for three-state patternsA
50.3) both the retrieval and the categorization abilities
improved. The transition from anR phase to aG phase is
clearly present in all data. For a critical value of the corre
tion, bc , there is a crossing between theD andE lines. Here
we remark that in the case of three-state patterns and bi
neurons (u50) the conditions for good retrieval and categ
rization behavior of the full patterns are, of course, not s

FIG. 1. The Hamming distanceD5D`
11 ~dashed line!, the cat-

egorization errorE5E`
1 ~full line!, and the neuron activityQ

5Q` ~thin dashed-dotted line! as a function of the correlationb.
The number of exampless55, the loading ratea50.01, the activ-
ity A takes the values 1 in the upper part and 0.3 in the lower p
and the thresholdu is 0 in the left part and 0.5 in the right part.

FIG. 2. The (u,b) phase diagram withA50.1,s55, and a
50.01. The thin dashed lineGopt indicates optimal categorization
he
4
d

e

-

ry

t-

isfied. But as the curves indicate, e.g., one finds the b
possible retrieval of the active sites (D50.7 forb,bc). Fur-
thermore, we also note the existence of a plateau forD in the
case of three-state patterns and three-state neurons, whe
Hamming distance is not very small but it still satisfiesD
,E. Finally, in all cases there exists a minimal value forE,
meaning that the categorization is optimal for the cor
sponding network parameters. This does not always hap
for b51, the reason being that although the neuron activ
Q becomes high for largeb, the pattern activityA may be so
small thats i cannot matchj i . This is in agreement with
Eq. ~6!.

This behavior is further illustrated in a typical (u,b)
phase diagram~Fig. 2!. We have divided theR phase in two
regions, one of them (R1) referring to the region whereD is

rt,

FIG. 3. The Hamming distanceD ~dashed line!, the categoriza-
tion error E ~full line!, and the neuron activityQ ~thin dashed-
dotted line! as a function of the thresholdu in the regionR2 of
Fig. 2.

FIG. 4. Left: The overlapsm ~full line! andM ~dashed line! as
a function of u for A50.01, s580, b50.1, anda50.02. Right:
The overlapM as a function ofu for A50.01,s580, b50.5, and
a50.5 ~dashed-dotted line!, a51 ~dashed line!, a52 ~dotted
line!, anda53 ~full line!.
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almost zero, the other one (R2) indicating the region where
D has already jumped to the plateau seen in Fig. 1. ThisR2

phase has not been seen before in the literature on the m
with binary concepts. The typical behavior in this phase
represented in Fig. 3. When increasingu starting from zero,
bothE andD sharply drop simultaneously from a maximu
value to a small value~almost zero in the case ofD). ThenD
jumps to a higher plateau, but stays smaller thanE ~the R2

phase!. Afterwards,D jumps further to become bigger tha
E ~the categorization phase!. Finally it attains the value 0.1
5A. To a certain extent one could say that the network
lows for both retrieval and categorization in thisR2 region.
However, optimal categorization occurs along the th
dashed lineGopt of Fig. 2.

In Fig. 4 we plot the behavior of the network for a small
A. For a network in theR phase an appropriate choice ofu
leads to a retrieval overlapm'1 while the overlap with a
conceptM becomes small. Thereby we note that althou
the concept storage seems to be rather small (a5p/C
50.02), the example storage is large for correlated patte
(as5sa51.6). For a network in theG phase and increasin
values ofu until u5uopt(a) the overlap with a concept be
comes larger, indicating that the categorization ability i
proves. Foru.uopt(a) this categorization ability slowly de
creases and atu5uZ(a), M falls abruptly to zero. This
illustrates that for a carefully tunedu, M'1, implying that
categorization stays successful even for a concept loa
larger thana53. So compared with the categorization pro
erties of the binary concept model~see Fig. 2 of@12#!, this
indicates that by using three-state concepts the categoriz
error is smaller and that a greater number of concepts ca
categorized.
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Finally, we have also studied, for comparison,m and M
as a function ofu for an analog input-output relationFu

5tanh(x/u). The same network parameters are used as in
4. Concerning retrieval of the examples a similar behavio
found with a slightly smallerm. Concerning categorization
however, although an analogous nonmonotonic behavioru
is seen,M does not come close to 1 for largera. It demon-
strates that the gain parameter of a continuous input-ou
relation does not play the role the zero-activity thresh
does for the three-state case. The reason is that in the th
state case this threshold switches off the neurons whose
hi is not large enough such that thes i can match the three
state patternsj i .

In conclusion, we have studied the retrieval and categ
zation properties of an extremely diluted three-state ne
network through the solution of its parallel dynamics.
comparison with existing models in the literature the co
cepts are allowed to be three state. The important parame
governing the transition from the retrieval to the categori
tion phase are the number of examples per concept and
correlations. By choosing appropriately the zero-activ
threshold of the neurons we find, in comparison with mod
for binary concepts, that there exists a region where both
Hamming distance and categorization error stay small
that a much greater number of concepts can be categori
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